9.1: Stability and the Phase Plane: Review Autonomous System

Two-dimensional first order SoDEs of the form: $\frac{d x}{d t}=F(x, y), \quad \frac{d y}{d t}=G(x, y)$.
Since these derivatives do not explicitly depend upon t (time), it is referred to as an autonomous system.
Solution curves to such a system in the phase plane is called a trajectory.
A critical point $\left(x_{*}, y_{*}\right)$ is a point that does not move with time...
$F\left(x_{*}, y_{*}\right)=G\left(x_{*}, y_{*}\right)=0$.
As a result, $x(t)=x_{*}$ and $y(t)=y_{*}$ is a solution to the system and is called an equilibrium solution.

Phase Portraits

Slope/Direction Fields

Determining Critical Points:

Set: $F(x, y)=0$ and $G(x, y)=0$ and solve for x and y.
Node: Every trajectory approaches (recedes) from (x_{*}, y_{*}) as $t \rightarrow \infty$, AND every trajectory is tangent at $\left(x_{*}, y_{*}\right)$ to some straight line through $\left(x_{*}, y_{*}\right)$.
Proper Node: Trajectories approach or recede in all directions.
Improper Node: All trajectories approach or recede in just two directions.

Sink: All trajectories approach the critical point.
Source: All trajectories recede from the critical point.
Saddle Point: Two trajectories approach the critical point, but all others are unbounded as $t \rightarrow \infty$.

Stable Critical Point: For each $\varepsilon>0$, there exists $\delta>0$ such that $\left|\vec{x}_{0}-\left(x_{*}, y_{*}\right)\right|<\delta$ results in $\left|\vec{x}(t)-\left(x_{*}, y_{*}\right)\right|<\varepsilon$ for all $t>0$.
Unstable: Simply means the critical point is not stable.
Center: Is when $\left(x_{*}, y_{*}\right)$ is stable and surrounded by simple closed trajectories.

Asymptotically Stable: (x_{*}, y_{*}) is stable and every trajectory that begins sufficiently close to (x_{*}, y_{*}), also approaches (x_{*}, y_{*}) as $t \rightarrow \infty$.
Stable Spiral Point or Spiral Sink: Asymptotically stable critical point around which trajectories spiral as they approach.
Unstable Spiral Point or Spiral Source: Asymptotically stable critical point around which trajectories spiral as they recede.
Closed Trajectory: Simple closed solution curve representing a periodic solution (like the elliptical trajectories above).

Problem: \#5 Find the critical point or points of $\frac{d x}{d t}=1-y^{2}, \quad \frac{d y}{d t}=x+2 y$.
$0=1-y^{2} \quad 0=x+2 y$

Gives $y=1$ or $y=-1$.
$0=x+2(1)$ or $0=x+2(-1)$ gives $x=-2$ or $x=2$, respectively.

So, $(-2,1)$ and $(2,-1)$ are our critical points.
See the graph below...

Problem: \#12 Find the equilibrium solution $x(t) \equiv x_{0}$ of: $\quad x^{\prime \prime}+\left(x^{2}-1\right) x^{\prime}+x=0$.
Construct a phase portrait and direction field for the equivalent first order system:

$$
x^{\prime}=y, \quad y^{\prime}=-f(x, y)
$$

Ascertain whether the critical point $\left(x_{0}, 0\right)$ looks like a center, saddle point, or spiral point.

Set $x^{\prime}=x^{\prime \prime}=0$, solve for x.
$x=0$ and thus the single equilibrium solution $x(t) \equiv 0$.

Phase plane portrait:
$x^{\prime}=y, \quad y^{\prime}=-\left(x^{2}-1\right) y-x$ is shown below.
We observed that the critical point $(0,0)$ in the phase plane looks like a spiral source, with the solution curves emanating from this source spiraling outward toward a closed curve trajectory.

Problem: \#20 Solve the system to determine whether the critical point $(0,0)$ is stable, asymptotically stable, or unstable.
Construct a phase portrait and direction field for the given system.
Ascertain the stability or instability of each critical point, and identify it visually as a node, a saddle point, a center, or a spiral point.
$\frac{d x}{d t}=y, \quad \frac{d y}{d t}=-5 x-4 y$

Substitution of $y^{\prime}=x^{\prime \prime}$ from the first equation into the second one gives $x^{\prime \prime}=-5 x-y=-5 x-4 x^{\prime}$,

$$
\text { so } x^{\prime \prime}+4 x^{\prime}+5 x=0
$$

The characteristic roots of this equation are $r=-2 \pm i$, so we get the general solution...

$$
\begin{aligned}
& x(t)=e^{-2 t}(A \cos t+B \sin t) \text { and } y(t)=? \\
& y(t)=e^{-2 t}[(-2 A+B) \cos t-(A+2 B) \sin t]
\end{aligned}
$$

(the latter because $y=x^{\prime}$).

Origin stable?

Clearly $x(t), y(t) \rightarrow 0$ as $t \rightarrow+\infty$, so the origin is stable.
Below you see the origin is an asymptotically stable spiral point with trajectories approaching $(0,0)$.

Problem: \#26 Given the system: $\frac{d x}{d t}=y^{3} e^{x+y}, \quad \frac{d y}{d t}=-x^{3} e^{x+y}$.
Solve the equation: $\frac{d y}{d x}=\frac{G(x, y)}{F(x, y)}$ to find the trajectories of the given system.
Construct a phase portrait and direction field for the system.
Identify visually the apparent character and stability of the critical point $(0,0)$ of the system.

$$
\frac{d y}{d x}=-\frac{x^{3}}{y^{3}}
$$

Separates to: $y^{3} d y=x^{3} d x$
$\int y^{3} d y=\int x^{3} d x \quad \frac{1}{4} y^{4}=\frac{1}{4} x^{4}+C^{\prime}$.

So $x^{4}+y^{4}=C$.

Thus the trajectories consist of the origin $(0,0)$ and the ovals of the form $x^{4}+y^{4}=C$, as illustrated below...

Closed periodic trajectories.

